Arctic LTER Project

Arctic Lakes: Site Review 2019

The Lakes Group

Phaedra Budy, Utah State University

February, 2018

Arctic LTER Annual Meeting 2018

Arctic LTER Project

The Lakes Team: Current Pl's and Collaborators

The Current Core

- Phaedra Budy (PI)*
- · Anne Giblin (PI)*
- George Kling (PI)
- Byron C. Crump (Co PI)
- · Dan White (RA)
- Gary Thiede (Research Associate)
- Stephen Klobucar (former Ph.D.), collaborating Post doc)
- Will Daniels (former Ph.D., collaborating Post doc)
- Will Longo (former Ph.D., collaborating Post doc)

Other Collaborators

- Jereme Gaeta (USU), Volunteer and Proposal Writing, Fish
- Robert Al-Chokhachy (USGS NoRock), Volunteer and Proposal Writing, Fish
- Phoebe Zarnetzke (MSU)
- Matt Walsh (UoT Arlington NSF \$ Eager)
- Nick Barrett & Natasha Christman (Ph.D. Students) & Peter MacKinnon (Research Associate) – Lake Warming
- Dr. Kim Hageman (USU) & Yo-Ping Chin (UoDel), Airborn Bio-contaminents
- Soren Brothers Limnologist (USU) USU Seed Grant, Proposal Writing, Carbon

Mapping the ARC-LTER Goal to Lakes

Research

Determine how system openness and landscape connectivity interact to shape the response of arctic lake ecosystems to disturbance:

- Pulse Fire, thermokarst failures
- Press Climate change, permafrost thaw,
 - local extinction or colonization events

LAKES:

- More internally focused
- Lakes are intermediate in biogeochemical openness
- Lakes offer a continuum of community openness
- ALSO On-going long-term monitoring of how lake ecosystems respond to environmental change

nutrients, organisms, and species.

LAKES Ongoing: Long Term Monitoring Activities

- Long-term sampling, process-level measurements, and modeling in:
 - Sentinel lakes including Toolik Lake, the Inlet Series lakes (I-lakes), and annually-selected others
 - Paired control (reference) and experimental lakes (in recovery, lake warming), sampled more or less frequently
 - Periodic and opportunistic sampling of lakes undergoing change due to disturbance (e.g., fire and thermokarst)
 - · Lakes added to address New LTER Activities (e.g., new open vs. closed)

LAKES Ongoing: Long Term Monitoring, 2018, e.g.,

Lakes =32
Visits = 101 (1-17*)
Actual Samples = 681
Many measurements

Toolik
11-8, Iswamp
E1,5, 6
Fog1-5
LTER 345-347
N1-2
NE9B, NE12, NE 14
S6-7
Zev + Upper Zev
Lower Campsite

LAKES Ongoing: Monopolizing on intriguing events/observations/patterns as they inform our broader questions

What is released as a landscape attenuator of the C

Permand N released.

Character of the exported C changed because of interactions with mineral sediments released into the lake

Epi-chlorphyll a (μg/L) LAKES Ongoing: PHASE 3 Synthesize results Chl a returns rapidly to pre of long-term lake levels once Water fertilization is fertilization terminated High densities of fish eat all the zoop; zoop · Threshold and lagged collapse responses · At some trophic levels -Fish begin relatively rapid recovery once rapid collapse disturbance was removed ***Importance of a long-term LTER approach Budy et al, in review LTER Long Term Data

Lakes span continuum of connectivity/openness

Fog Lakes (and E's)

Wolverine Lakes

Inlet Lakes (I lakes)

Closed

"Leaky"

Open

NEW: How will benthic microalgae communities respond to changes in light availability caused by increase in delivery of

DOC to lakes due to disturbance?

Anne Giblin

• Fog 2, Shade cloth, 1 m from the bottom, in two locations, 3m depth

- Remove shade cloth and retrieve cores from under the cloth and reference site
- Incubate cores at in situ temperatures at 5 light levels (including dark)
- Measure O2 uptake or production in the overlying water, chl a, GPP, etc.

NEW: How will benthic microalgae communities respond to changes in light availability caused by increase in delivery of DOC

to lakes due to disturbance? *Anne Giblin*

3 Weeks:

- little change between shaded and unshaded sediments,
- except Chl a in the shade plots increased
- 6 Weeks:
 - Chl a was much lower in the shaded plots
 - GPP_{max} was greatly reduced, and respiration was also depressed
- · Benthic microalgae appear to light limited
 - · Sensitive to disturbance

NEW: Community Openness & Connectivity – Disturbance Open Lakes

- Highly connected via streams
- High diversity of fish species, abundance unknown
- Variable (sp.), large to moderately-sized top predator
- Little internal population regulation buffered by immigration and emigration
 - species can move from unfavorable to favorable habitat
- More productive?

NEW: Community Openness – Closed Lakes

- Little to no connection via streams
- Low diversity & abundance (often 2 spp.)
- Common, 'small' top predator
- Strong internal population regulation, density dependence
- Less productive?

NEW: Community Openness: Whole lake manipulation. Step 1.

- Hypothesis: Open lakes: = more resilient to disturbance
 - Whole lake community manipulation

'Close' the lake Monitor whole system response

NEW: Community Openness: Whole lake manipulation. Step 2.

- Hypothesis: Closed lakes: = less resilient to disturbance
 - Whole lake community manipulation

'Open' the lake Add highly mobile grayling Monitor whole system response

NEW: 2017-2019: Whole lake manipulation: Pre-Manipulation Data Collection

- I1 and I2 designated = Open Experimental & Reference
- Fog 2 and Fog 3 designated = Closed Experimental & Reference
- All lakes are LTER lakes*
 - Full limnological sampling, ~ 10 years
- Asymmetric: Fish and fish food, etc.
 - Fogs are part of Lake Warming project, lots known
 - I lakes had barely been sampled previously
- NSF REU program
 - Collect baseline fish & lower trophic level (fish food) data, M/R
- New Comparative Analyses

Preliminary Conclusions

- Closed lakes are more sensitive to disturbance
 - Fertilization vs. Thermokarst slumps
- Open lakes are more biologically-diverse and productive, potentially more resilient to disturbance
 - Diverse fish community composed on many age classes
 - Terrestrial inputs = greater
 - But benthic productivity results suggest otherwise?
- Climate change (warming) may actually increase whole system productivity, to a point
 - Response likely to be different: closed vs open

